
 Understanding BPM Servers

David Chappell

October 2004

Sponsored by Microsoft Corporation

© Copyright Chappell & Associates 2004. All rights reserved.

 2

Contents

Composite Applications in a Service-Oriented World 3

Supporting Orchestrations: BPM Servers 3
The Genesis of BPM Servers 4

Examining BPM Servers 5

Communication Services 6
Orchestration Runtime Services 6

Executing an Orchestration 6
Managing an Orchestration’s State 7
Handling Transactions 7
Correlating Requests and Responses 8
Exposing an Orchestration as a Web Service 9

Development Tools 9
 Management Tools 10
 Business Rules Services 10
 Workflow Services 11
 Process Monitoring Services 12
 Other Services 12

An Example BPM Server: BizTalk Server 2004 12

 Communication Services 13
 Orchestration Runtime Services 13
 Development Tools 14
 Management Tools 16
 Business Rules Services 17
 Workflow Services 17
 Process Monitoring Services 17
 Other Services 18

Conclusions 18

 3

Composite Applications in a Service-Oriented World

The next generation of application architecture is upon us. Just as mainframes gave way
to client/server applications, which in turn were supplanted by multi-tier applications, the
next major architectural style has appeared. The new norm is service-oriented

applications, where business logic is exposed to other software through standard services.
Made practical by the universal agreement on web services, applications built in this style
will dominate over the next few years.

Building service-oriented applications raises an obvious question: what will call those
services? One important category of clients will be user interfaces such as web portals,
desktop applications, and software running on mobile devices. Services themselves will be
another type of client, since some services will surely rely on others to carry out their
functions. But there’s a third category of client that may turn out to be the most important
of all: process logic, the software that knits independent services together into cohesive
solutions.

For example, think about what’s required to add a newly-hired employee to various
software systems within a company. Carrying out this task might require interacting with
one application that handles payroll, another that maintains information about health
insurance, a third that tracks retirement benefits, and perhaps others. Each of these
applications exposes services (in at least a loose sense of the word) that can be accessed
by the logic driving this process. Taken together, this collection of services and process
logic makes up a composite application.

The figure below gives an abstract view of a composite application. Business services,
such as those supporting the addition of a new employee, are made available by various
applications. The process logic that drives these services, most commonly referred to as
an orchestration, is implemented as a separate piece of software distinct from the
business services. Typically, as in the case of adding a new employee, a composite
application implements all or a substantial part of some business process.

Supporting Orchestrations: BPM Servers

Business services can be provided by legacy applications, by packaged applications such
as ERP systems, or by new software built on an application server such as the .NET

Business

Service

Business

Service

Business

Service

Orchestration

 4

Framework or a J2EE-based product. Today, every major software vendor has embraced
service-oriented development, and so the foundations for creating service-oriented
applications are in place. But what is the right foundation for orchestrations? What does a
platform designed to support the process logic of a service-oriented composite application
look like?

The answer is now clear. Just as application servers were created to support the multi-tier
applications that appeared in the last great change in architectural styles, a new style of
server is appearing to support the orchestrations that the shift to services implies. Multiple
vendors are working to fill this gap, and as is typical for new infrastructure technologies,
there’s still some diversity in their approaches. It took several years for the industry to
reach a consensus on exactly what technologies should be included in an application
server, and it’s likely to take some time for a similar consensus to emerge on what a
process-oriented platform should provide. This consensus is coming, however, and a new
kind of server is making its way into the world. Focused on supporting process-driven
composite applications in a service-oriented world, this server fits squarely within the
concepts of business process management (BPM), and so can be thought of as a BPM

server. Examples of BPM servers today include Microsoft’s BizTalk Server 2004, IBM’s
WebSphere Business Integration Server Foundation, BEA’s WebLogic Process Edition,
and others.

The Genesis of BPM Servers

From a service-oriented perspective, the goal of a BPM server is plain: it should provide
the right foundation for orchestrations that drive composite applications. To achieve this
goal, several different streams of technology have come together. They include the
following:

� Service-oriented applications allow creating a service-oriented architecture (SOA),
and the move to SOA is perhaps the strongest force in application development
today. Yet this approach effectively implies the creation of a platform supporting
process logic—orchestrations—to drive the services an SOA exposes. This platform
is a BPM server.

� Vendors of integration products realized that both enterprise application integration
(EAI) and business-to-business (B2B) integration were just subsets of the larger
problem of automating business processes. Connecting diverse applications, perhaps
across organizational boundaries, is important, but it’s not enough. While EAI and
B2B provided a good lens for viewing this problem in the 1990s, it’s now become
apparent that the real goal is BPM. As a result, integration products have morphed
into BPM servers.

� Vendors of traditional workflow products, focused on person-to-person processing,
also realized that workflow was just another subset of business processes. Like
vendors of integration products, they saw that the future lay not in specialized
products for this particular area, but rather in the more general approach defined by
BPM. Like integration products, traditional workflow products have also moved to
become BPM servers.

It’s important to realize that while BPM server-based composite applications are a natural
evolution in software development, they aren’t a panacea. This kind of application can be
challenging to maintain, given the diverse technologies it relies on and its inherently
distributed nature. Performance might also be a concern, especially for web services

 5

interactions in very high volume scenarios. As with other technologies, using this approach
makes sense only when it’s the best solution for the business problem at hand.

Examining BPM Servers

Real business processes are seldom simple. The orchestration that drives a service-
based process might access several applications, run for hours, day, or weeks, implement
complex business rules, interact with many different people, and more. To support all of
this, a BPM server must provide a diverse set of technologies and tools. The figure below
illustrates what a typical BPM server provides and how its pieces fit together.

Orchestration Runtime Services

Communication Services

Business Rules

Services

Workflow Services

Other Services

Process Monitoring

Services

Application Server

Orchestrations

IF … THEN …

Development

Tools

Management

Tools

Operating System

As the diagram shows, BPM server vendors commonly build their offerings on an
application server, such as the .NET Framework or a J2EE-based product, which in turn
runs on some operating system. On this foundation, a BPM server can provide a range of
support for orchestrations, including the following:

� Communication services that allow an orchestration to interact with the various
business services a composite application uses;

� Orchestration runtime services that directly support an orchestration during execution,
such as state management, transaction support, and more;

� Development tools for defining the orchestration logic that drives a composite
application, specifying mappings between data used by various business services,
and other purposes;

� Management tools for managing the orchestration, its communications, and other
aspects of the BPM server;

� Business rules services, allowing the business rules an orchestration uses to be
created and managed separately from the process flow;

� Workflow services, allowing people to participate in the business process this
composite application implements;

 6

� Process monitoring services, including both monitoring at a technical level and
business activity monitoring (BAM) that provides real-time information about a running
process;

� Other services, which vary depending on exactly which areas a particular vendor
chooses to emphasize.

BPM servers include a diverse set of technologies. To get a better sense of what these
products typically offer, it’s worth examining each of the areas listed above in more detail.

Communication Services

The most fundamental problem that a BPM server needs to solve is communicating with
the business services an orchestration uses. Eventually, the dominant way to do this will
be via SOAP-based web services, and so the communication services built into a BPM
server today must include support for web services. Yet while SOAP may one day be all
that’s needed, that day is years away. Realistically, other communication mechanisms are
also necessary, at least for the next few years. Native connections to common
communications products such as IBM’s WebSphere MQ are required, for example, as
are links to popular applications such as SAP R/3. The typical approach to addressing this
problem is to provide adapters that support these connections to diverse technologies.

It’s worth pointing out how different these requirements are from the communication
services provided by a typical application server. The .NET Framework, for example,
provides only SOAP, .NET Remoting, and access to Microsoft Message Queuing
(MSMQ), while a typical J2EE application server provides SOAP, Java Remote Method
Invocation (RMI), and access to the Java Message Service (JMS). Neither offers the
diverse communication choices required to create functional composite applications in
today’s enterprise environments.

Orchestration Runtime Services

BPM servers provide a broad range of runtime services for orchestrations. This section
describes the most important of these.

Executing an Orchestration

As described in the following section on development tools, orchestrations are typically
defined graphically rather than through code. Diagrams aren’t directly executable,
however, so a BPM server must provide some way to translate an orchestration’s
graphical depiction into an executable form, then actually execute it. One approach is to
translate an orchestration diagram into a low-level form, such as Java bytecode or the
.NET Framework’s Intermediate Language (IL), then execute it like any other program.
Another possibility is to transform the logic represented in the diagram into a process-
oriented language, then execute the resulting program on a specialized process engine.

Because different BPM servers implement orchestrations in different ways, trying to run an
orchestration created for one vendor’s product on another BPM server is unlikely to be
successful. Yet there are situations where it can be useful to define web services-based
interactions between orchestrations that can be executed on any vendor’s BPM server. To
address this need, a group of vendors including Microsoft, IBM, and others have defined
the Business Process Execution Language (BPEL). Now being standardized under the
auspices of OASIS, BPEL is an XML-based language for defining interactions via web

 7

services. While most BPM servers today support BPEL in some fashion, how they do it
varies across products.

To get a sense of how BPEL might be used, suppose a large manufacturer wishes to
define a standard purchasing process, then get all of its suppliers to implement this
process. To accomplish this, the firm could describe the process in BPEL, then distribute
the resulting description to its suppliers. Assuming the BPM servers those suppliers were
using supported BPEL and that all of the process’s interactions used web services,
implementing this cross-enterprise process would become significantly easier.

Managing an Orchestration’s State

One of the biggest differences between an orchestration and the business services it uses
is the time each takes to execute. A request to a typical service generates a reply within a
few seconds. Because it commonly drives all or part of a business process, however, an
orchestration may run for hours, days, or weeks, depending on how long the process
takes to finish. What if human approval is required at some point in the process, for
instance, and the person who must give her approval is on vacation? Because business
processes can take a long time to complete, the orchestrations that control them can also
run for a long time.

This long-running nature affects how an orchestration manages the in-memory information
it maintains—the state—about a running process. If the orchestration is blocked for a
significant period of time, keeping this state in memory doesn’t make much sense.
Instead, a BPM server should provide a way for an orchestration’s state to be
automatically written to disk, then restored again when the business process resumes,
even if it’s days or weeks later.

State management illustrates another notable difference between BPM servers and
application servers. Since supporting long-running business processes isn’t their primary
purpose, application servers haven’t traditionally addressed this kind of state
management. Because they are explicitly intended to support long-running orchestrations,
however, BPM servers do provide this service.

Handling Transactions

Many business processes require the all-or-nothing behavior characterized by a
transaction. For example, an orchestration driving a business process might need to
invoke two business services and ensure that either both requests succeed or both fail.
This kind of atomic transaction can be accomplished using a standard two-phase commit
protocol, and it’s something that BPM servers typically support. In fact, application servers
include this feature, so a BPM server built on an application server can offer this quite
easily.

The nature of many business processes raises another issue, however. What if a
particular process requires all-or-nothing behavior, but a traditional atomic transaction isn’t
possible? Atomic transactions require locking data for the life of the transaction, something
that isn’t a problem when the transaction is short. But suppose the services that must be
bundled into an all-or-nothing group include one that requires human approval. Even if the
required approver isn’t on vacation, the time it takes for a person to respond is likely far too
long for data to remain locked. Or what if one service that must be in this transactional
group doesn’t participate in atomic transactions? This isn’t a far-fetched worry, since many
applications won’t let arbitrary clients lock their data.

 8

To handle situations like these, a BPM server supports long-running transactions. Also
called business activities and other names, long-running transactions handle errors not by
rolling back all updates, but rather by executing some kind of compensating logic when an
error occurs. For example, suppose a particular long-running transaction includes an
atomic transaction that transfers money from one bank to another, followed by an
operation that executes another application once the transfer has succeeded. If this final
operation fails, the logic of the business process requires that the money transfer be
undone. Yet the atomic transaction that performed this transfer has already committed—
how can it be reversed? The answer is that compensating logic must run if a failure
occurs, logic that might execute another atomic transaction to undo the effects of the
transfer. A BPM server provides built-in facilities that allow the creator of an orchestration
to define this compensating action, then have it automatically execute when a long-
running transaction fails.

While compensation is useful when atomic transactions aren’t possible, it’s not without
problems. Suppose an orchestration modifies some data in the early part of a long-running
transaction, for instance, then runs a compensating operation later to change this data
back to its original state. What happens if some other application accesses that data in
between these two events? This second application may well use data that’s ultimately
deemed to be incorrect in making business decisions, such as computing credit risk. Or
think about operations for which there is no obvious compensation. If an orchestration
causes a missile to be launched, there’s no way for compensating code in that
orchestration to reverse this. Yet while compensation isn’t a perfect solution, it is
nevertheless the right approach for an important category of problems faced by business
processes.

Correlating Requests and Responses

Suppose two instances of the same type of orchestration each invoke the same business
service at around the same time. Each orchestration has sent some information into the
service, such as a purchase order, and each is waiting for the same response, such as an
invoice. How can the correct response, the matching invoice, be delivered to the right
orchestration? In other words, how does correlation happen between requests and
responses?

On the face of it, this problem seems simple: just make the request a remote procedure
call (RPC), forcing the orchestration to block until the response comes back. Since each
RPC typically happens over a single logical connection, the response can be easily routed
to the correct requester. But this simple solution falls apart when the requester is an
orchestration driving what might be a long-running business process. What happens if the
response takes a week to come back? Keeping a logical connection alive that long isn’t
practical. Another possible solution is for the BPM server to insert a unique identifier into
the request message, then require that the response contain the same identifier. This also
sounds appealing, but it implies modifying the software sending that response to include
this identifier, an unattractive prospect.

A better solution takes advantage of the strong likelihood that the request and response
messages themselves contain information that can be used to correlate them. A purchase
order and its matching invoice, for example, probably contain identical purchase order
numbers and other values that can be used to uniquely identify this interaction. A BPM
server can allow the creator of an orchestration to indicate which values in the request and
response should be used to correlate requests and responses, then automatically route
responses to the orchestration instance that made the request. Once again, this is another

 9

example of how the long-running nature of business processes forces BPM servers to
provide a function that’s missing from traditional application servers.

Exposing an Orchestration as a Web Service

As discussed so far, an orchestration acts as a client of services. By providing the central
logic for a business process, it drives the operations that make the process go. There are
many cases, however, where it’s useful for an orchestration to be a service itself.
Suppose, for example, that an orchestration for some complex business process wishes
to make use of other existing orchestrations, or that a business process needs a user
interface (not an unlikely occurrence). To address situations like these, a BPM server can
allow an orchestration to expose itself as a web service. Doing this makes clear how blurry
the line between services and orchestrations can be, but it’s nonetheless an important
feature for a BPM server to provide.

Development Tools

An orchestration implements the logic that drives a business process. Accordingly,
orchestration logic tends to be process-oriented, more concerned with issues like the
order in which services should be invoked than with detailed problems like constructing a
SQL query. This focus on process rather than service-level detail makes it possible to
describe an orchestration graphically rather than with a traditional programming language.
While typical services will still mostly be created in Java, C#, or some other conventional
language, virtually all of today’s BPM platforms provide graphical tools for creating
orchestrations.

Doing this has some substantial advantages. Graphically-defined logic can be quicker to
understand, making both creation and maintenance easier and cheaper. And unlike logic
defined in, say, C#, graphically-defined orchestrations can potentially be developed at
least in part by business-oriented analysts rather than by purely technical developers. This
increases the chances of getting the process right, since the people who truly understand
the process can be much more involved in defining its logic.

The ability for business-oriented analysts to participate in defining orchestrations has led
some BPM enthusiasts to assert that developers are no longer required to automate
business processes. With BPM, they claim, business-oriented analysts can do it all. Even
a cursory look at today’s BPM server products, however, and at the technical complexity
of combining business services provided by diverse software into composite applications,
makes clear that these assertions are wishful thinking. While BPM is certainly a step
forward, developers will still play an important role in creating applications. To make it
easier for developers and business people to work together, however, some BPM servers
provide two levels of orchestration tooling. One tool targets business analysts, and so
focuses purely on process-oriented definition. The other tool targets developers, exposing
more of a composite application’s technical detail. Business analysts and developers can
then share definitions across these tools to more effectively create orchestrations.

While defining process logic graphically is a useful approach, it’s not without its
weaknesses. Graphical tools might provide only 90% of the solution, for example,
requiring a developer to write code to handle the rest. And even though the idea of
business analysts working with software developers to create graphical processes is
appealing, many organizations just don’t work this way. In fact, many organizations don’t
even have business analysts as such, which can make it harder to reap the advantages of
a service-oriented approach.

 10

Another kind of tool is also important for creating orchestration-driven composite
applications. To see why, think about how an orchestration might use the data it
exchanges with business services. One common scenario is that information obtained
from one service must be transformed in some way, then sent to another service. For
example, suppose an order received from one application involved in a business process
is rejected for some reason. The message sent to indicate this rejection might contain
some of the same information that was in the original order message, such as a unique
identifier and the quantity requested. Or perhaps information used by different services,
such as a part number, is maintained in different formats, e.g., character and numeric.

For situations like these, data mapping tools can provide a way both to control what data is
copied between services and to modify that data as it’s copied. Because many BPM
servers handle all data as XML internally, it’s common to use XSLT as a standard
approach for modifying information when required. Although not every application requires
them, data mapping tools are nonetheless an important part of a typical BPM server.

Management Tools

Managing a BPM server and the orchestrations it supports is an essential aspect of
creating effective composite applications. As a result, management tools are critically
important for any BPM server. Management is a broad area, and different BPM servers
take different approaches. Among the common themes are support for configuring
orchestrations and the server itself, the ability to monitor message flows and set
thresholds, and tools for creating reports that describe the behavior of orchestrations and
their interactions.

Business Rules Services

Imagine a lender that processes mortgage loan applications under $300,000 differently
than applications for larger amounts. This policy of handling different-sized loans in
different ways is an example of a business rule. Business processes depend on business
rules, and so does the software that implements those processes. In a composite
application supporting this loan application process, for instance, the rule just described
might cause an orchestration to invoke one business service for applications less than
$300,000 and another for applications above this amount.

It can sometimes make sense to implement business rules directly in an orchestration,
and typical BPM servers allow creating orchestrations that do this. It can also be useful,
however, to separate business rules from the process logic that depends on them. This is
commonly done using a business rules engine (BRE), software designed explicitly for
storing and executing business rules. Rather than embedding rules directly, an
orchestration can instead invoke the BRE when necessary to make a decision based on
one or more rules.

Using this approach has several advantages, including the following:

� Business rules can be stored in a single place. Rather than being scattered
throughout the process logic of an orchestration, rules can be organized into well-
defined groups. This makes it easier to understand what rules are being used, and it
also makes reuse of those rules easier.

� Less technical people, such as business analysts, can create and modify rules. While
working with rules in a BRE still requires some technical bent, it’s much simpler than
working with business rules implemented in a programming language. Because

 11

developers aren’t required, rules can be changed more quickly to reflect changing
business requirements.

� Changes to rules can be deployed more easily. In many business processes, the
rules change more frequently than the process itself. In the example just described,
for instance, suppose the limit at which mortgage loans are processed differently
increases from $300,000 to $350,000. Separating the rules from an orchestration’s
logic can allow this change to be made more easily, since the orchestration itself need
not be directly updated.

But BREs aren’t a free lunch. They can also present challenges, including the following:

� Maintaining substantial sets of rules can be difficult. What impact will adding a new
rule or changing an existing one have on how a process operates? Without an
effective way to answer this question before the addition or change is made, BRE-
based processes can produce surprising results.

� While letting non-IT people in an organization directly change rules can lessen the
burden on the IT department, it can also create new problems. People outside IT
often don’t have good change control procedures, for example, and so rules can be
added or modified in uncontrolled ways. Since the problems this causes show up in
software, IT professionals are still likely to be held accountable.

Despite these concerns, many applications can benefit from using a BRE. This includes
both composite applications and other more traditional software. In fact, there’s no strong
technical reason why BREs should be thought of as part of BPM servers, and several
firms today sell them as distinct products. Nonetheless, it’s common today to view BREs
as part of the broad landscape of BPM and thus as a component of a BPM server.

Workflow Services

On its own, an orchestration typically implements the controlling logic for a business
process that executes without any human intervention. Sometimes called straight-through

processing, this approach is a perfect match for many types of business processes. Yet
it’s not enough for many others. Think once again about loan origination, for example.
Different people acting in different roles may need to be involved at various stages in this
process, with tasks passed from one person to another. Each of these individuals might
need to make a decision, approve a decision made by someone else, or provide other
input to the process. Human-oriented business processes like this are critical in many
organizations, and so viewing processes solely in terms of orchestrations and the
business services they invoke ignores an important part of reality. Given this, a complete
BPM server must support workflow, a term that today is generally used to mean human
involvement in a business process.

Workflow technologies frequently allow creating a work list of specific tasks for each of the
people involved, perhaps a way to define various roles that can be filled by different
individuals, and other services. Workflow products predate the advent of BPM, and while
some BPM servers have roots in this area, those that grew from integration-oriented
products frequently add workflow support on top of their existing technologies. However
it’s accomplished, allowing people to interact with orchestration-driven composite
applications is a central requirement for a BPM server.

It’s also one of the most difficult problems to solve. Depending on which side of the fence
a BPM server originated on—human-based workflow or software-based straight-through

 12

processing—it’s likely to be much better at one of these two approaches than the other.
Implementing orchestrations that also support workflow in an effective, straightforward way
is a challenging problem. It’s fair to say that no BPM server today has fully solved it.

Process Monitoring Services

As with anything that automates a business process, keeping track of what’s happening in
a composite application is important. As described earlier, a BPM server’s management
tools commonly provide a way to monitor a process at a technical level. But while
providing information aimed at technical staff is important, it’s not enough. Business
people can also benefit from services that monitor a running business process.

The reason for this is obvious: making good business decisions requires up-to-date
information. If an organization’s business processes are built on a BPM server, the
orchestrations running on that server must make this information available in a way that’s
useful to business people, not just technicians. How many orders have been received in
the last hour, and for which products? What products are selling best at each location
today? What percentage of loan applications was approved this morning? Providing
answers to questions like these is the province of business activity monitoring (BAM).

Originally defined by Gartner, BAM is a broad concept, encompassing more than just
information from BPM servers. Because it runs the heart of an orchestrated business
process, however, a BPM server must make available the information needed to provide
BAM. And unlike traditional business intelligence technology, which focuses on historical
data, BAM provides up-to-the-minute information about currently executing business
processes. The goal is to give business people the best possible inputs for making
decisions.

Other Services

While the services described so far reflect typical BPM server products, there is a good
deal of variation, too. Some products add B2B-oriented services, for example, such as
management of trading partner profiles and support for industry-specific standards such
as RosettaNet and SWIFT. Others provide powerful tools for business process modeling
and simulation, allowing organizations to make better decisions about how those
processes should look. Given that different vendors emphasize different aspects of the
problem, this variation isn’t surprising. Yet despite the availability of extra features in
specific products, the commonality across BPM servers is large. Their similarities are
much bigger than their differences,

An Example BPM Server: BizTalk Server 2004

It’s useful to understand BPM servers in an abstract way. It’s also useful to illustrate these
ideas with a concrete example. This section describes Microsoft’s BizTalk Server 2004 in
terms of the conceptual framework just described. The figure below shows how the major
technologies of BizTalk Server 2004 correspond to the services in the BPM server
diagram shown earlier.

 13

As the diagram indicates, BizTalk Server 2004 is built on the .NET Framework and runs
on Windows. The core of the product, called the BizTalk Server Engine, is used by every
orchestration. Other components may also be used depending on what’s required for a
particular application. The following sections describe these components and the engine
that acts as the product’s foundation.

Communication Services

In BizTalk Server 2004, communication services are provided by the messaging aspects
of the BizTalk Server Engine. Adapters provided by Microsoft and others support various
communication mechanisms, including HTTP, FTP, SOAP, and WebSphere MQ, along
with connections to popular applications such as SAP R/3. BizTalk orchestrations also rely
on pipelines, components that perform various actions on incoming and outgoing data.
These actions can include creating or verifying digital signatures, converting the data into
and out of XML, and others.

Orchestration Runtime Services

Along with communication services, the BizTalk Server 2004 engine also provides
orchestration runtime services. Those services include the following:

� Execution: In BizTalk Server 2004, the graphical definition of an orchestration is
transformed into a standard .NET assembly, then executed using the Common
Language Runtime (CLR). Versioning and other aspects of an orchestration’s life
cycle use the mechanisms assemblies provide, as in any .NET Framework-based
application. BizTalk Server 2004 also allows importing a BPEL definition to create an
orchestration and exporting an existing orchestration to BPEL

1
.

� State management: An orchestration that receives no inputs for a period of time will
have its state automatically written to disk using Microsoft SQL Server as the

1
 For more on Microsoft’s views on BPEL, see http://www.gotdotnet.com/team/wsservers/bts2004/bpel_v10.zip.

Business Rules

Engine

Human Workflow Services

Other Services

Business Activity

Monitoring

.NET Framework

Orchestrations

IF … THEN …

Orchestration

Designer, BizTalk

Mapper, Others

Health and

Activity

Tracking Tool

Windows

BizTalk Server 2004 Engine

 14

underlying storage mechanism. When an input arrives for this orchestration, the
BizTalk Server Engine causes the orchestration to resume and reloads its state.

� Transaction support: The creator of an orchestration can group a set of operations
into a scope, then mark that scope as requiring either an atomic transaction or a long-
running transaction. The operations in a scope that uses an atomic transaction will
rely on traditional two-phase commit technology to ensure all-or-nothing behavior.
Scopes marked as long-running have associated user-defined compensation logic
that executes when a failure occurs.

� Correlation: An orchestration’s creator can define correlation sets that inform the
BizTalk Server 2004 Engine which message fields should be used to associate
requests and responses. The Engine then routes those responses to the correct
orchestration instances when they arrive.

� Exposing an orchestration as a web service: An orchestration can be exposed as a
web service using the .NET Framework’s ASP.NET technology.

Development Tools

The primary tool for creating an orchestration in BizTalk Server 2004 is the Orchestration
Designer. Running inside Microsoft’s Visual Studio, this tool allows a developer to specify
an orchestration’s behavior using various shapes. In the simple orchestration shown
below, for instance, the diamond shape represents a decision (i.e., an if-then-else
statement), while envelopes represent sending and receiving messages (i.e., interacting
with business services). Other shapes are used to create loops, execute actions in
parallel, group actions into scopes, and carry out other functions.

 15

Orchestration Designer is meant to be used by developers. To allow business analysts to
participate more easily in orchestration design, BizTalk Server 2004 also includes a tool
called the Orchestration Designer for Business Analysts. Rather than running inside Visual
Studio, this tool runs inside Microsoft Visio, as shown below. Orchestrations created with
this tool can be imported into the developer-oriented Orchestration Designer, modified,
then copied back to their original home for more work. The intent is to allow developers
and business analysts to work together, providing an appropriate tool for each.

BizTalk Server 2004 also includes tools for data mapping. The BizTalk Editor provides a
graphical approach for creating XML schemas, while the BizTalk Mapper, shown below,
allows defining mappings and transformations between fields in messages defined by
those schemas. This example shows two message schemas, each defined using the
BizTalk Editor. Two values from the order request message are being copied into the
message sent when an order is denied. One of those values, containing a unique identifier
for this order, is transformed from character to numeric form when it is transferred using
one of the BizTalk Mapper’s built-in transformations.

 16

Management Tools

In BizTalk Server 2004, management of the server itself and of the orchestrations it
supports is done using the Health and Activity Tracking (HAT) tool. The HAT tool provides
a range of management functions, including the ability to display current and historical
information about executing orchestrations. The screen below, for example, illustrates
tracing an orchestration as it executes.

 17

Business Rules Services

BizTalk Server 2004 includes a Business Rules Engine as a standard part of the product.
An orchestration can optionally invoke this engine to evaluate a business rule, then use
the result of this evaluation to control decisions in the process it implements. Rules are
created using the Business Rule Composer, a graphical tool that allows defining business-
oriented vocabularies, then expressing rules in those terms. Assuming an appropriate
vocabulary was defined for loan origination, for example, a rule might be expressed as IF
LoanAmount > 300000 THEN MortgageType = Jumbo.

Workflow Services

BizTalk Server 2004 includes a workflow framework called Human Workflow Services
(HWS). Using this framework, it’s possible to create orchestrations that support human
involvement in business processes. HWS is accessible via web services, and so
processes that use it can interact with people via any client that can make SOAP calls.
HWS does not include a graphical tool for defining workflows and specifying work lists,
however, nor does it have direct support for building interactive clients. Third-party
products provide these services, and developers can also create clients directly.

Process Monitoring Services

For technical monitoring services, BizTalk Server 2004 provides the HAT tool, as
described earlier. For business-oriented monitoring, the product also includes a
component called Business Activity Monitoring. Using a tool known as the Tracking
Profile Editor, a developer can configure an orchestration to make specific information
available to the BAM component. Exposed via a web service, this component can be
accessed by Excel or other clients to display information about a running process in a way
that’s meaningful to business users. Using BizTalk-provided Excel add-ins, for instance, a
business user can create BAM views that display and update information. The figure
below, showing order progress and sales tracking information, illustrates a simple BAM
view provided via Excel.

 18

Other Services

Other technologies included in BizTalk Server 2004 include the following:

� Business Activity Services, including tools for working with trading partners and
managing those relationships.

� Enterprise Single Sign-On, which provides a way to map credentials across different
authentication systems.

� Various accelerators providing support for industry standards such as HL7,
RosettaNet, and SWIFT.

Conclusions

The goal of a BPM server in a service-oriented world is to make it easier to create, run,
and manage the process logic—the orchestration—that drives a composite application.
The technologies these products support today certainly aren’t the last word, and more
developments are certain to come. One possibility, for example, is that the distinction
between BPM servers and application servers may eventually disappear, as BPM and
application server capabilities are merged. Whatever happens, the basics of this platform
style are in place. As service-oriented composite applications become more widespread,
the importance of the technology that supports them is sure to increase.

 19

David Chappell is Principal of Chappell & Associates (www.davidchappell.com) in San
Francisco, California. Through his speaking, writing, and consulting, David helps
information technology professionals around the world understand, use, and make better
decisions about enterprise software technologies. He has presented keynotes and
seminars in 35 countries, his books have been published in ten languages, and his
consulting clients have included Hewlett-Packard, IBM, Microsoft, Stanford University,
Target, and others.

