

 1 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

Product Development Challenges and Approach for IT
Services Companies

Srikanth Inaganti
Context
IT services companies are delivering similar or same solutions in different vertical industry
segments again and again at no cost and with no schedule differentiation over a period of time!!
The hyper competition in the market place, coupled with reduced capability or skill set
differentiation between the services companies, is not only making sustainable growth a
challenge for services companies but also making it difficult for customers to choose the right
services partner. Many services companies have initiated programs under different themes such
as innovation, reuse, etc., that lead either to partial or no success. Given this scenario, this paper
discusses the obstacles within a services company for creating a decisive differentiation that
would help augment further growth.

Major Challenges
For the last few decades, big services companies have themselves either developed small
reusable components and huge products, perhaps accidentally, or they have inherited products
via acquisitions. Some of these products are highly successful, and some of them are kept in cold
storage. Revenue growth from these successful products from the past is fast declining for
various reasons, such as the architecture being old (client-server based, for example), not having
support access over internet, being completely out-of-place for cloud model, etc. Some of the
recent initiatives for presenting these services as products are met with partial success. Here is
the list of challenges for product development within services companies in both building new
products as well as in modernizing the existing portfolio of products.

(i) Most of the initiatives targeting differentiation focus on developing the technology
components that cut across different domains. In spite of high reuse potential, these
will not significantly reduce the cost and effort required to build a strong differentiation
factor when it comes to the end-to-end business domain in question.

(ii) Lack of a long term (more than 3 years) strategy or roadmap for the product compounded
by frequent (say within 3 years) changes in LOB leadership or practice owners is
another challenge, as is not involving domain and architecture leads in direct
discussions on strategy at senior management level. Even if a strategy is in place,
treating execution as separate [1] leads to un-optimized results or a failure.

(iii) Lack of sustained support for research and development in domain and technology with a
focus on building the product – over a long period – is another problem.

(iv) Lack of required upfront funding for development, thus linking the funding to revenues,
leads to delays in getting the complete product to the market.

(v) Too much focus on tactical or short sighted goals – e.g., the next one or two quarter
revenue targets – would force the LOB leaders to give low priority to initiatives that
have high payback periods, which works against the product development culture.
Too much rigor in cost optimization may lead to thinking negatively about
transformational or product initiatives.

(vi) Lack of differentiated sales/pre-sales/licensing strategies for selling the product as it is
and the product as a service.

(vii) Lack of either required support structures or synergy between different groups within the
product development lifecycle. Lack of a single and coherent picture about the
product initiative for legal, architecture, LOB, corporate functions.

(viii) To build or modernize products keeping in mind a few customers in order in the
future to rework the product to make it generic may result in a delay in coming out
with the required quality and coverage, ultimately leading to losing the opportunity to
be a leader in the market place.

(ix) Too many parallel activities to compress the schedule may force the architects and
designers to spend much less time on the problem at hand when actually it requires

 2 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

right thinking upfront coupled with typical service industry productivity norms such as
KLOC per day/week, resource utilization, cost vs. revenue, etc. that would
successfully drive towards major reworks later, if not failures. Lack of proper controls
for architects to make the architecture planning and execution right.

The following few sections try to discuss the activities and different groups that need to get
involved in product development, and critical success factors, funding, revenue models,
organization structure, etc., required to address some of these challenges.

Activities before Product Development Kickoff
In order to create a differentiation that can generate quantum benefits, here are the enterprise
wide activities to be carried out. Typically, services companies are organized into verticals or
LOBs, according to industry segments, servicing customers. Once the enterprise leadership
decides to make a product out of the repeatable services across various industry segments, the
following are the activities that it has to carry out.

1. Enterprise should be willing to invest and take calculated risks. This might be simple to
state but is the biggest cultural change for companies which are either conservative or
not used to making investments unless there is an opportunity at hand. Please refer to
funding and revenue models section for more details.

2. Enterprise wide opportunity identification and validation:
a. This requires enterprise architects and domain leads to be assigned to each

vertical segment with the task of identifying the projects that are delivered to
customers that can be modeled as products.

b. Understand the type of solutions (architecture and design) delivered.
c. Qualify the identified opportunities based on

i. Repeatability
ii. Expected revenue
iii. Current opportunity pipeline
iv. Verify contracts to establish IP, Copyright ownership.

In case earlier contracts establish the IP, copyright ownership, beyond
doubt then take the existing delivery and productize it. In case earlier
contracts don’t establish IP, copyright ownership – develop a new
product altogether.

v. Tentative break-even time, in case of a fresh build or modernization
effort

3. Create a high level plan and tentative investment required.
4. Define the roadmap (Architecture vision, Milestones/Product releases).
5. In case of a decision to use open source software, evaluate its implications for product

deployment or distribution strategy. If required, seek legal opinion and approval.
6. Register trademarks for the products being built.
7. Requirements capture and analysis
8. Develop the product.

As part of the development during the architecture elaboration, it is natural to think about
using open source software in an effort to reduce the cost of development as well as tp
consider the overall product license. Using open source IDEs for solution development
should not be a major issue. However, while embedding open source components into
runtime, consider the following aspects with respect to open source licensing and its
impact on product sales.

(a) Support for open source product in the longer run

 3 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

(b) IP, Copyrights protection of derivative works. This means understanding the type of
license agreements such as GPL, LGPL, Apache, CDDL, etc., required.

(c) Impact of licensing on distribution (of product) vs. hosting

9. Release and Rollout
10. Seek feedback and continuous improvement

The following diagram captures the most important and often neglected activities that need to be
carried out before product development kick-off.

Figure 1. Expected chain of interactions for product development kick-off

Here are the critical success factors to create required differentiation:

(i) Have effective synergy between strategy, operations, and sales/pre-sales, corporate and
legal – to effectively mitigate any risks associated with IP, copyrights, and usage of
open source, etc. As far as IP and copyrights issues are concerned, it is strongly
recommended to prepare a STOP DOING [2] list as guidelines, disseminate them to
all stakeholders involved with product development lifecycle and supported with
regular audits by CTO and legal function.

(ii) Deliverables from services offered in general become customer’s property in most cases
– if not all. In order to meet quarterly revenue targets (clinch the deals), services
companies will have a tendency to sign-off on complete transfer of IP and copyrights
at the end of the project. This will be suicidal if products are to be positioned as
solution building blocks at a later point of time. This is the trap that companies
running after short-term growth without long-term thinking will fall into. Hence, it is
also recommended that all RFP responses that contain the products should be
scrutinized by a council/task force responsible for ensuring that services companies
will not give away their IP and copyrights, by mistake or without a strong reason
approved by corporate leadership.

 4 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

(iii) Focus on converting or building end-to-end business domain solutions as products not
technology specific components or solutions. Leverage Xtreme programming and
agile methodologies to incrementally develop the product.

(iv) Define long term strategy and invest accordingly. STOP DOING: Never build a product
while keeping just current projects pipeline in mind. Project delivery timelines would
force product development team to take some shortcuts that lead to compromise on
the quality and domain coverage. Make sure that reworks are minimal in future.

(v) Need to hire seasoned product managers to bring in best practices in product lifecycle
management or groom capable service line managers into product managers. These
product managers should have balanced knowledge about market insights, business
domain, and technology.

(vi) Define right organization structure within each LOB for products. Please refer to
suggested organization structure section for more details.

(vii) Define different performance metrics for product business unit. Need to move away from
utility and profit center driven performance models at least in the shorter term
(perhaps for 1-2 years after the product hits the market) while building the product or
until the product matures enough.

(viii) Define incentive or reward model for other support functions to work on product
initiatives – to improve motivation and cooperation levels. Please refer to the
following section for more details.

(ix) Involve domain and architecture leaders in strategy discussions at senior management
level to bring up a partnership model approach. Please note that senior resources or
seasoned consultants don’t prefer to be order takers and not involving them leads to
disorientation.

(x) While building the product, it is critical to bring specialists or solution architects, and
technical leads to report into enterprise architect for better control on the product
evolution. It is high time that services company leadership should elevate the
enterprise architecture function as true advisory but not reporting function on the
field.

(xi) Rather than attaching domain leads and enterprise architects to end-to-end project
deliveries on a day-to-day basis after the architecture and design phase is over, they
should be treated as change agents by separating them into product engineering
group so that they get enough time to think forward to improve the product features
and qualities further.

(xii) Define the traditional as well as cloud specific revenue models, if the product can be
consumed via cloud. Please refer to following section for more details on cloud
revenue models.

Funding and Revenue Models
There are two familiar models based on the source of funding. One is corporate funding and the
other is LOB funding. Although there are notional differences in the sense that LOB seeks
approval for budgeting the product development or modernization, from the corporate as part of
the long-term or strategic planning, the impact of the source of funding and the way it is funded
on product evolution is quite different. LOB funding helps make the business unit head and
his/her team effective partners to incrementally develop the product, and immediately take the
product pieces (individual modules or service offerings) to market to get feedback for further
improvements in the next cycle of planning. The portions of the incremental revenues accrued
from the interim product releases can be utilized to further improve the product features.

Here are the pros and cons of different funding models.

Corporate Funding LOB Funding

 5 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

Top-down strategy, tends to be complete/one-
time funding and imposes constraint on product
development schedule, Typically sought when
strong business case exists but the cost of it
cannot be borne by LOB, Typically comes
when seasoned/excellent product manager or
leadership initiates the product

Bottom-up strategy
Incremental funding – for the lack of securing
funds from corporate, corporate gives enough
freedom to LOB leadership to invest and show
results in a agreed time frame.

No maneuverability for the lack of incremental
approach, Tends to be strategy – execution [1]
approach.

More domain focused, Tends to be strategy as
a choice cascade, more maneuverability in
terms of changing the direction [choice
cascade model, 1]

Once the corporate leadership involved, LOB
leaders may not feel enough freedom to
innovate or experiment.

Sense of partnership model between LOB and
corporate leaders, LOB leaders are in control
of product evolution decisions

Easy to get deviations or waivers from routine
business targets.

High attention/focus will be given by all support
functions like all technology practices.

Bringing alignment across LOBs for required
support is difficult in situations where every
business unit has their own business targets.
For example, support function loaning the
resource at market value rather than at
individual CTC would bloat up the cost and
hence LOB leaders will be forced into tradeoff
between cost and quality of resources
especially when it comes to cost of architects
or consultants. Also in support function
leadership point of view, what is the motivation
for them to loan resource at low price?

Relatively short (base) product development
lifecycle, perhaps large break-even period. Too
many releases for testing within the market,
and improvements may not work out as
corporate leadership might not prefer to wait for
too long – especially in services sector.

Long cycle time to come out with complete
product – as incremental development is
dependent on profit and loss of LOB. Hence, it
is suggested to leverage SaaS and cloud
architectures for revenue generation right from
the first iteration or phase of development. It is
critical to select those modules/service
offerings that have a strong business case to
go for cloud based deployments. Please refer
to section on expected generic product
features for more details.

Expect delays in making major decisions
especially to adjust the strategy as per the
feedback.

Product evolution can be linked to different
application deliveries as long as contracts are
in favor in terms of IP and copyrights.

Marketing, Sales functions will have to wait for
relatively long time to show case

Marketing, sales functions get the incremental
finished product builds (modules or individual
service offerings) to show case, raise the
enthusiasm from potential customers and get
timely feedback to readjust the decision made.

Some of the initiatives driven at the corporate level, like innovation, reuse, etc., can be leveraged
for further enhancing the product to make up for any shortcomings in the funding. This might
involve getting the buy-in from the innovation leadership and assessment of alignment with their
objectives.

Nowadays, hype around cloud architectures [3] opens up new revenue models in addition to
typical user based licensing of products. Before that, domain leads and enterprise architects will
have to assess how the product fits into the cloud model – that needs answer to the following
important questions.

(i) Is the “pay as you go” model appropriate for the type of utility it is [5]?

 6 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

(ii) Is load fluctuation high enough to go for dynamic provisioning of CPU and storage?
(iii) What type of cloud would be better? Public or private or hybrid?
(iv) Platform choice consideration - Should the cloud platform be chosen right at the

beginning OR should we delay that till the deployment time? This depends on
whether to leverage all 3 delivery models such as IaaS, PaaS and SaaS or only two
such as IaaS and SaaS. If at all PaaS had to be chosen as one of the cloud delivery
channels, business analysts and architects had to be extremely careful about the
vendor lock-in risk. One of the key decision driver during the platform choice should
be the ability to move from one vendor to other without major effort. For example, an
application developed for Google App engine can be moved to Cloud Foundry
without any changes [6]. Other associated considerations are whether cloud hosting
forces intrusive integration via cloud platform API into the product or not? Whether or
not chosen cloud platform necessitates tweaking the application or product with
platform specific API?

Type of cloud hosting depends on the type of application [5], cost reduction goals in terms of
CAPEX and OPEX, kind of customers expected, expectations on economy, security, and control.
As a rule of thumb (which may not be true in all the cases), non-critical/support function related,
high volume usage applications by individual consumers can be better candidates for public cloud
hosting where as applications that are targeted at enterprises such as hospital management
system for big hospitals or dispensaries are potential targets of private cloud. Please be noted
that distinction between different types of clouds is expected to blur in coming few years time as
governance models get standardized, matured to make the customers comfortable.

The following are typical revenue models that can be applied for products that are SaaS
compliant.

(i) User Based Licensing + Customization Costs + Annual Maintenance Costs: Typical
model where product is restricted by a mechanism that restricts its usage for either a
particular maximum number of users or maximum number of concurrent users.
Customization costs are charged as per actuals. Standard maintenance costs either
on time and material basis or at flat rate. Another variation to this is enterprise
licensing which offers unlimited usage in terms of number of users and transactions.

(ii) Private cloud + Transaction Based Charging (TBC): This comes with infrastructure
CAPEX for provider and pay as you use model for consumers, be it individuals or
small or big enterprises. In this number of transactions executed from each activity or
business process can be captured using Billing and Metering module within the
product.

(iii) Public cloud + Transaction Based Charging (TBC): This is similar to private cloud plus
transaction based funding except that CAPEX is not borne by the actual provider of
the product.

The options (ii) and (iii) are like post-paid connections from a mobile service operator or pay utility
bills at the end of every month. Especially in the case of health care provider space, few
enterprise customers are asking for user based licensing in spite of cloud hosting!! These
customers want to take advantage of enterprise licensing as a flat rate rather than paying per use
– which is typically high for a 50+ bedded corporate hospital. Cloud hosting with user based
licensing is like pre-paid card from a mobile service operator.

 7 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

(iv) Private cloud based + User Based Licensing + Annual Maintenance Costs: This model
restricts the number of users per application as well which indirectly maps more or
less onto the number of transactions in a time-bound usage within a day, 9:00 a.m. to
6:00 p.m. But if the regular usage goes beyond a certain number of users, provider
would be at loss compared with CLOUD PLUS TBC. Hence, it is essential for the
provider to understand the dynamics of usage and finalize on the rates. Please note
this is in addition to processing storage charges at the infrastructure and platform
level. Annual maintenance costs can be attributed to any additional customization
requests, specific customer requirements that can be catered to via service
versioning, etc.

(v) Public cloud + User Based License + Annual Maintenance Costs: This is similar to option

(iv) above except that there is no CAPEX required for provider for infrastructure.

Suggested Organization Structure
Within each vertical segment or LOB, product business can be treated as sub-organization.
Product domain and engineering teams should be measured differently than service industry
norms such as utilization, cost vs. revenue, and other factors. Product engineering manager,
product architect, domain lead, and product development head should be part of research team.
Few of the specialists or technical leads would assist product architect in doing research and
proof of concepts, as needed. Some specialists or solution architects and business analysts can
get aligned ON and OFF with product customization works on demand.

Figure 2. Suggested Organizational Structure

Typical Product Requirements
It is essential to keep a type and region specific segmentation of customers right from the
beginning to develop a decent product. For example, in the healthcare provider space, typically
there will be slight variations in the data captured for registration of patients between corporate,
army, navy, and public/government owned hospitals. Practically, it is not possible to capture all
the scenarios right at the beginning. However, making the product architecture comply with SOA
or service design principles would make the system amenable for future changes. Hence, product

 8 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

maturity improves over a period of time as more and more variations are designed into it. Note
that product maturity in the world of SOA is closely associated with SOA maturity level [4]. The
following diagram shows typical product requirements that architect has to be concerned with
apart from non functional requirements.

Technology Platforms
(Java, .NET, Open Source + Mix and match)

Core Business Requirements (Non Volatile – Common Base)
[Customizability, Flexibility, Configurability etc.]

Region ‐1

Type ‐1

Region ‐2

Type ‐2

Region ‐3

Type ‐3

Region ‐4

Type ‐4

Region ‐5

Type ‐5

Cu
st
om

iz
at
io
n

In
te
gr
at
io
n

D
om

ai
n
Sp
ec
ifi
c
Ex
te
rn
al
 In
pu
ts
(
Fo
r e

xa
m
pl
e
in

he
al
th
ca
re
 su

ch
 a
s
LO

IN
C,
/S
N
O
M
ED

/I
CD

‐1
0/
IC
D
‐

9/
D
ru
g
D
at
ab
as
e/
Fe
ed
s t
o
cl
in
ic
al
 &
 im

ag
e
re
po
si
to
ry
)

D
om

ai
n
sp
ec
ifi
c
st
an
da
rd
 in
te
gr
at
io
ns
 su

ch
 a
s H

L7

Ex
te
rn
al
iz
ed

 b
us
in
es
s
ru
le
s

Re
gi
on

 b
as
ed

 p
lu
gg
ab
le
 c
om

pl
ia
nc
e
m
od
ul
es

(in
du
st
ry
 s
pe
ci
fic

 &
 c
ro
ss
 in
du
st
ry
)

In
te
rn
at
io
na
liz
at
io
n
&
 L
oc
al
iz
at
io
n

Fl
ex
ib
le
 p
ro
du
ct
 p
ac
ka
gi
ng

 (L
oo
se
 c
ou
pl
in
g
be
tw
ee
n

m
od
ul
es
 O
R
se
rv
ic
e
of
fe
ri
ng
s)

M
ul
ti
te
na
nc
y
(s
up
po
rt
 f
or
 c
lo
ud

 d
ep
lo
ym

en
t)

Bi
lli
ng

 a
nd

 M
et
er
in
g

M
ul
ti
ch
an
ne
l a
cc
es
s
re
qu
ir
em

en
ts

In
te
ro
pe
ra
bi
lit
y
w
ith

 e
xi
st
in
g
se
cu
ri
ty
 in
fr
as
tr
uc
tu
re

Figure 3. Typical Product Requirements

Conclusions
Typically, service companies are partners to the customer for a specified time frame throughout
the delivery plus warranty period. In a lucky scenario, they will be partners for the maintenance
period as well. Most of the time the work gets done in a reactive mode. In other words, services
companies are used to develop systems for stated requirement and transfer the ownership during
the warranty period before pushing it to maintenance phase. Product business is entirely different
and services companies are expected to scale up to be true partners to customers over a long
period of time, expect to be pro-active and continuously innovate/improve on the product features
– via regular product releases and rollouts – for those who sign annual maintenance contracts.
This can only be achieved with an appropriate business model defined for the product and
performance models defined for different roles within product business unit, through domain and
technology thought leadership and guidance supported by continuous funding to do
market/domain analysis, technology research in a cost center model approach.

Author

 9 Copyright © 2010 Srikanth Inaganti. All Rights Reserved. www.bptrends.com

Srikanth Inaganti is a Practice Partner, Enterprise Architecture Consulting Practice at Wipro
Consulting Services. Currently he is working as business unit architect for HCIT, Wipro Infotech.
He can be reached either at srikanth.inaganti@wipro.com or inaganti.srikanth@gmail.com.

Acknowledgements
I would like to thank Harbirsingh Sawhney, Sudhakar Akkala and Krishna Mohan Avutapalli for
discussions that we had around building the product and challenges faced, which lead me to write
this article. I would like to thank my colleague Chandrasekhar Ramaraju for sharing his thoughts
and providing me with valuable feedback. I would also like to thank Dr Udaya Bhaskar
Vemulapati, Senior Practice Partner, Wipro Consulting Services for required support in many
ways.

References
1. The Execution Trap – HBR, July-August 2010
2. How do you do “Stop doing?”
3. Cloud Architecture’s missing link – ZAPFLASH, Jason Bloomberg – July 12, 2010
4. SOA Maturity Model, by Srikanth Inaganti and Sriram Aravamudan, Published in BP

Trends in Dec, 2007
5. How cloud stretches the SOA scope, The Architecture Journal, 21st Volume
6. Java standards help prevent PaaS vendor lock-in

Abbreviations
API – Application Provider Interface

CAPEX – Capital Expenditure

CDDL – Common Development Distributed Licensing

CPU – Central Processing Unit

CTC – Cost to the Company

CTO – Chief Technology Office

GPL—GNU Public Licensing

IDE – Integrated Development Environment

IP – Intellectual Property

LGPL – Limited GNU Public Licensing

LOB – Line of Business

RFP – Request for Proposal

SaaS – Software as a service

SOA – Service Oriented Architecture

TBC – Transaction Based Charging

UBL – User Based Licensing

